The effect of Δ^1 -tetrahydrocannabinol on the noradrenaline and dopamine content of the brain and heart of the rat

J.D.P. GRAHAM*, M.J. LEWIS & J. WILLIAMS

Department of Pharmacology, Welsh National School of Medicine, Heath Park, Cardiff CF4 4XN

Female Wistar rats weighing 250 to 300 g were treated with either an aqueous solution of Tween 80 (25 mg/kg, orally) or Δ^1 -THC (10 mg/kg) in Tween 80, 60 min before being killed. The brain and heart were quickly removed, washed free of

(P < 0.001) and the difference between Tween 80 and Δ^1 -THC in Tween 80 is significant (P < 0.01). These results indicate that Δ^1 -THC reduced the net DA levels of the heart and brain.

 Δ^1 -THC caused a concentration-related inhibition of $[^3H]$ -(-)-noradrenaline ($[^3H]$ -NA) uptake in the isolated perfused heart of the rat (Graham, Lewis & Li, 1974a). The amount of tritium released upon transmural stimulation of the rat vas deferens pre-incubated with $[^3H]$ -NA was also reduced in a dose-dependent fashion by Δ^1 -THC (Graham, Lewis & Li, 1974b). The failure of Δ^1 -THC to alter net NA levels in the heart does not exclude alterations in turnover.

This work was supported by the M.R.C.

Table 1 Effects of orally administered Tween 80 (25 μ g/kg) and Δ^1 -THC (10 mg/kg) in Tween 80 on the noradrenaline (NA) and dopamine (DA) content of the brain and heart of the rat, expressed as ng/g tissue \pm s.e. mean; n, number of rats used

Tissue		Control	n	Tween 80	n	Δ¹-THC + Tween 80	n
Brain	NA	286 ± 12	12	184 ± 26	10	186 ± 15	11
				Tw < C**		THC < C*	
	DA	499 ± 4	12	444 ± 24	10	344 ± 17	11
						THC < C*	
Heart	NA	506 ± 32	15	487 ± 72	12	477 ± 34	12
	DA	468 ± 34	13	311 ± 60	11	26 ± 2	12
				Tw < C***		THC < C*	
						THC < Tw*	

Student's t test, comparison of control values (c) with Tween 80 (Tw) and with Δ^{1} -THC in Tween 80 (THC); also of Tw v. THC.

blood and transferred to liquid nitrogen. The noradrenaline (NA) and dopamine (DA) contents were assayed by the photofluorimetric methods of Haggendal (1963) and Carlsson & Waldeck (1958) respectively and expressed as ng/g wet wt of tissue.

Oral Tween 80 caused a reduction (P < 0.01) in the NA content of the whole brain as did the combination of Δ^1 -THC and Tween (P < 0.001). The effects of the two treatments were not significantly different. Neither Tween 80 nor Δ^1 -THC in Tween 80 had an effect on the NA content of the whole heart. Tween 80 alone caused a significant reduction (P < 0.05) in the DA content of the heart, but a non-significant reduction in the brain. However, the combination of Δ^1 -THC and Tween 80 produced marked decreases in the DA level in both heart and brain

References

CARLSSON, A. & WALDECK, B. (1958). A fluorimetric method for the determination of dopamine (3-hydroxytryptamine). Acta physiol. scand., 44, 293-298.

GRAHAM, J.D.P., LEWIS, M.J. & LI, D.M.F. (1974a). The effect of Δ^1 -tetrahydrocannabinol on the uptake of ³ H-(-)-noradrenaline by the isolated perfused heart of the rat. *Br. J. Pharmac*. (in press).

GRAHAM, J.D.P., LEWIS, M.J. & LI, D.M.F. (1974b). The effect of Δ^1 -tetrahydrocannabinol on the release of ³H-(-)-noradrenaline from the isolated vas deferens of the rat. *Br. J. Pharmac.* (in press).

HAGGENDAL, J. (1963). An improved method for fluorimetric determination of small amounts of adrenaline and noradrenaline in plasma and tissues. *Acta. physiol. scand.*, 59, 242-254.

^{*} P < 0.001; ** P < 0.01; *** P < 0.05.